Krystyn Van Vliet

Professor of Materials Science & Engineering at MIT, Associate Provost, MIT

Professor Van Vliet’s group studies material chemomechanics: material behavior at the interface of mechanics, chemistry, physics, and biology. She focuses on thermodynamically metastable surfaces and interfaces, in which stress-assisted chemical reaction kinetics are notoriously difficult to analyze via either experiment or simulation. The mechanisms of this coupling in cell-material interactions are incompletely understood, due to both biological complexity and lack of appropriate experimental and computational tools, but are key to design of materials that modulate cell adhesion for drug uptake and differentiation. Her long-term goal is to predict and modulate key functions of biological cells by drawing analogies to the coupled chemical/mechanical behavior of structurally simpler, nonbiological material interfaces and nanocomposites. These integrated experimental and computational efforts include three main thrusts: (1) chemomechanical mapping of nanocomposite surfaces including living cells; (2) mechanics of amorphous and viscoelastic surfaces and nanostructures; and (3) chemical kinetics in mechanically strained, nanoscale material interfaces. Her group has used this interdisciplinary application of mechanical and chemical forces to rapidly map environment-structure-property relations in engineered materials, and to predict the binding kinetics of individual molecules on living cells. These studies have shown that the stiffness of materials to which molecular ligands are tethered can directly affect kinetics of ligand-receptor interactions at cell surfaces.

Professor Van Vliet serves as the faculty supervisor of the DMSE Nanomechanical Technology Laboratory, has co-developed new undergraduate core classes, and has implemented new programs to retain underrepresented minority students.